RWTz - Закрытые распределительные устройства ТП СН/НН с внешним обслуживанием

низкого напряжения.

Конструкция

 компактная рамная конструкция из оцинкованной листовой стали, порошковая окраска любого цвета, толщиной до 2 мм, готовая к монтажу на любой подстанции или на стене;

• для закрытых и комплектных ТП СН/НН с внешним обслуживанием;

• все активные элементы полностью защищены;

установки на стене или стойке;

- размеры РУ могут быть любые, в соответствии с конкретными потребностями заказчика:
- маркировка распределительного устройства с помощью прочных пластмассовых табличек для идентификации всех ключевых элементов;

Токоведущие цепи

- токоведущие цепи вводного и отходящего модулей выполнены из медной полосы с резьбовым соединением, с поперечным сечением, подобранным в соответствии с токовой нагрузкой, оснащены заклепочными гайками, обеспечивающими установку компонентов шины при подаче напряжения;
- соединительная шина для клеммы переносных заземляющих устройств;.

Конфигурация

для промышленных и строительных объектов с ограниченным пространством, с возможностью

обеспечение электроснабжения, распределения и учета электроэнергии, а также защиты электрических устройств от последствий коротких замыканий (КЗ) и перегрузок на стороне

MZ: вводный модуль

- питание модуля осуществляется через шину либо кабель с помощью латунных клемм ZLM-2×300 на шинах токоведущей линии;
- шинный мост токовой цепи полностью защищен;
- разъединитель (предохранитель) или автоматический выключатель до 2500 А;
- заземляющие клеммы для подключения заземляющих устройств;
- модуль может быть дополнительно оснащен PK/EQ.

МО: отходящий модуль

- разъединители или основания предохранителей (на колодке или в литом корпусе);
- в качестве опции модуль может комплектоваться дополнительными элементами, например, клеммами генератора;
- защищенные схемы резервирования;
- кабельные хомуты.

МР. измерительно-балансировочный модуль, соответствующий рекомендациям дистрибьютора и продавца электроэнергии;

SON: модуль освещения, схема управления уличным освещением до-роги в районе подстанции;.

OPW: вспомогательные цепи, освещение подстанции (16A/D01), розетка 230B (16A/D01),

PK/EQ: контрольный учет, анализ качества электроэнергии, измерительные трансформаторы напряжения, измеритель параметров сети (аналоговый или цифровой), анализатор параметров качества электроэнергии, связь;

ВК: конденсатор для компенсации холостого хода трансформатора / батарея конденсаторов.

BASIC TECHNICAL DATA

Номинальное напряжение соединения:	230/400 B
Номинальное напряжение изоляции:	500/690 B
Номинальная частота:	50 Hz
Выдерживаемое импульсное напряжение:	8 kB
Номинальный непрерывный ток сборных шин:	1250/1600/2500 A
Номинальный непрерывный ток на выходе;	160/250/400/630 A
Номинальный кратковременный выдерживаемый ток:	40 кА (1 с.)
Номинальный пиковый выдерживаемый ток:	80 KA
Ток короткого замыкания внутренней дуги:	20 KA
Класс защиты IP:	2X
Степень защиты от механического воздействия IK:	10
Класс защиты:	I
Размеры вводных / отходящих клемм:	2 x 4 x 240 mm² / 4 x 240 mm²
Сетевые схемы:	TN-S, TN-C, TN-C-S, TT, IT
Высота / ширина / глубина:	без ограничений

СООТВЕТСТВИЕ СТАНДАРТАМ

• PN-EN 61439-1

"Распределительные устройства и блоки управления низкого напряжения - Часть 1: Общие положения";

PN-EN 61439-2

"Распределительные устройства и блоки управления низкого напряжения - Часть 2: Распределительные устройства и блоки управления для распределения электроэнергии";

PN-E-05163

"Защищенные низковольтные распределительные устройства и блоки управления. Руководство по испытанию в условиях электрической дуги, возникшей в результате внутреннего короткого замыкания";

PN-EN 50274

"Низковольтные распределительные устройства и блоки управления - Защита от поражения электрическим током - Защита от непреднамеренного прямого контакта с опасными активными частями";

PN-EN 62208

"Пустые корпуса для низковольтных распределительных устройств и блоков управления. Общие требования";

PN-EN 60529

"Степени защиты, обеспечиваемой корпусами (Код ІР)";

PN-EN ISO 4628

"Краски и лаки - Оценка деградации покрытий - Определение количества и размера дефектов, а также интенсивности однородных изменений внешнего вида - Часть 6: Оценка степени меления ленточным методом";

PN-EN ISO 2409

"Краски и лаки - Испытание сетчатым надрезом";

PN-EN 62262

"Степени защиты от внешних механических воздействий, обеспечиваемые корпусами электрооборудования (Код IK) (IDT PN-EN 50102:2001)".

