RWT - Закрытые распределительные устройства для ТП СН/НН

- для промышленных и строительных объектов;
- обеспечение электроснабжения, распределения и учета электроэнергии, а также защиты электрических устройств от последствий коротких замыканий (КЗ) и перегрузок на стороне низкого напряжения.

ОСНАЩЕНИЕ

Корпус

 компактная, легкая модульная конструкция, обеспечивающая тре-буемую жесткость; изготовлен из стальных оцинкованных или алюминиевых профилей, соединенных при помощи литых

- алюминиевых или полиамидных соединителей, которые позволяют соединять отдельные элементы без использования какихлибо инструментов;
- высокая механическая прочность и степень защиты для предотвращения проникновения пыли и механических повреждений:
- полностью защищен, с крышками из стального листа с антикоррозийным покрытием, порошковое окрашивание любого цвета, поставляются в виде фиксированных или наклоняемых блоков для удобства осмотра и наблюдения при помощи тепловизионной камеры;
- внутреннее пространство с изолированными частями функциональные модули, токоведущие цепи;
- позволяет изменить сторону источника питания путем переставления модуля питания распределительного устройства или установки измерительного модуля;
- подключение модулей с помощью винтов (без клепки или сварки) позволяет быстро их демон¬тировать, доставить распределительное устройство до места установки в виде модулей (при ограниченном пространстве) и и осуществить повторную сборку;
- устанавливается на дополнительную раму, соответствующую размерам кабельного канала;
- размеры РУ могут быть любые, в соответствии с конкретными потребностями заказчика:
- соединение нескольких модулей под углом, например, 90°;
- рым-болты для (передвижного) кранового транспорта;
- маркировка распределительного устройства с помощью прочных пластмассовых табличек для идентификации всех ключевых элементов:

Токоведущие цепи

- токоведущие цепи вводных и отходящих модулей выполнены из медной полосы с резьбовым соединением, с поперечным сечением, подобранным в соответствии с токовой нагрузкой, оснащены заклепочными гайками, обеспечивающими установку ком¬понентов шины при подаче напряжения;
- соединительная шина для клеммы переносных заземляющих устройств;

Конфигурация

MZ: вводный модуль

- питание модуля осуществляется через шину либо кабель с помощью латунных клемм ZLM-2×300 на шинах токоведущей линии:
- шинный мост токовой цепи полностью защищен;
- разъединитель (предохранитель) или автоматический выключатель до 2500 A;
- заземляющие клеммы для подключения заземляющих устройств:
- модуль может быть дополнительно оснащен PK/EQ.

МО: отходящий модуль

- разъединители или основания предохранителей (на колодке или в ли¬том корпусе);
- в качестве опции модуль может комплектоваться дополнительными элементами, например, клеммами генератора;
- защищенные схемы резервирования;
- кабельные хомуты.

MP: измерительно-балансировочный модуль, соответствующий рекомендациям дистрибьютора и продавца электроэнергии;

SON: модуль освещения, схема управления уличным освещением дороги в районе подстанции.

OPW: вспомогательные цепи, освещение подстанции (16A/D01), розетка 230B (16A/D01),

PK/EQ: контрольный учет, анализ качества электроэнергии, измерительные трансформаторы напряжения, измеритель параметров сети (аналоговый или цифровой), анализатор параметров качества электроэнергии, связь.

ВК: сконденсатор для компенсации холостого хода трансформатора / батарея конденсаторов.

НОМИНАЛЬНЫЕ ПАРАМЕТРЫ

Номинальное напряжение соединения:	230/400 B
Номинальное напряжение изоляции:	500/690 B
Номинальная частота:	50 Гц
Выдерживаемое импульсное напряжение:	8 kB
Номинальный непрерывный ток сборных шин:	1250/1600/2500 A
Номинальный непрерывный ток на выходе;	160/250/400/630 A
Номинальный кратковременный выдерживаемый ток:	40 kA (1 c.)
Номинальный пиковый выдерживаемый ток:	80 кА
Ток короткого замыкания внутренней дуги:	20 кА
Класс защиты IP.	4X/2X
Степень защиты от механического воздействия IK:	10
Класс защиты:	1
Размеры вводных / отходящих клемм:	2 x 4 x 240 mm / 4 x 240 mm²
Сетевые схемы:	TN-S, TN-C, TN-C-S, TT, IT
Высота / ширина / глубина:	без ограничений

СООТВЕТСТВИЕ СТАНДАРТАМ

• PN-EN 61439-1

"Распределительные устройства и блоки управления низкого напряжения - Часть 1: Общие положения";

• PN-EN 61439-2

"Распределительные устройства и блоки управления низкого напряжения - Часть 2: Распределительные устройства и блоки управления для распределения электроэнергии";

• PN-E-05163

"Защищенные низковольтные распределительные устройства и блоки управления. Руководство по испытанию в условиях электрической дуги, возникшей в результате внутреннего короткого замыкания";

PN-EN 50274

"Низковольтные распределительные устройства и блоки управления - Защита от поражения электрическим током - Защита от непреднамеренного прямого контакта с опасными активными частями";

• PN-EN 62208

"Пустые корпуса для низковольтных распределительных устройств и блоков управления. Общие требования";

• PN-EN 60529

"Степени защиты, обеспечиваемой корпусами (Код ІР)";

PN-EN ISO 4628

"Краски и лаки - Оценка деградации покрытий - Определение количества и размера дефектов, а также интенсивности однородных изменений внешнего вида - Часть 6: Оценка степени меления ленточным методом";

PN-EN ISO 2409

"Краски и лаки - Испытание сетчатым надрезом";

• PN-EN 62262

"Степени защиты от внешних механических воздействий, обеспечиваемые корпусами электрооборудования (Код IK) (IDT PN-EN 50102:2001)".

